Основные положения современной клеточной теории

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Строение эндоплазматической сети

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Вариант 1

A1. Процесс исторического развития живой природы от появления жизни на Земле до наших дней — это

1) естественный отбор
2) эволюция
3) борьба за существование
4) межвидовая борьба

А2. Цитологическим доказательством эволюции является

1) единство планов строения организмов в пределах типов
2) сходство зародышей в пределах типа Хордовые
3) сходство строения и химического состава клеток всех организмов
4) наличие рудиментов — остатков имевшихся ранее органов

А3. Наличие рудиментов и атавизмов является доказательством эволюции

1) сравнительно-анатомическим
2) палеонтологическим
3) эмбриологическим
4) биогеографическим

А4. Находки отпечатков ископаемых растений являются доказательством эволюции

1) биохимическим
2) из области систематики
3) сравнительно-анатомическим
4) палеонтологическим

A5. Эволюционным процессом внутри неродственных систематических групп, находящихся в одинаковых условиях, приводящим к приобретению сходных признаков, называется

1) конвергенция
2) рудимент
3) дивергенция
4) атавизм

А6. Сходство форм тела у акул, ихтиозавров и дельфинов является примером эволюции

1) филетической
2) дивергентной
3) параллельной
4) конвергентной

А7. Органами, развивающимися из разных зародышевых зачатков и приспособленными в результате конвергенции к выполнению одинаковых функций, называются

1) атавизмы
2) гомологичные органы
3) рудименты
4) аналогичные органы

А8. Появление от одного общего предка нескольких видов галапагосских вьюрков является примером эволюции:

1) филетической
2) дивергентной
3) параллельной
4) конвергентной

В1. Выберите три правильных ответа.

Доказательствами эволюции называют свидетельства

1) общности происхождения всех организмов от единых предков
2) индивидуального развития
3) изменяемости видов
4) изменения условий окружающей среды
5) возникновения одних видов от других
6) изменения численности живых организмов

В2. Выберите три правильных ответа.

Примером аналогичных органов являются

1) рука человека и крыло бабочки
2) колючки боярышника и колючки барбариса
3) ловчие листья росянки и колючки барбариса
4) крыло бабочки и крыло птицы
5) почечные чешуи и усики гороха
6) усики гороха и усики винограда

Биологическая мембрана

Схема строения биологической мембраны: 1 — гидрофильные концы липидных молекул; 2 — гидрофобные концы липидных молекул; 3 — периферические белки; 4 — полуинтегральные белки; 5 — интегральные белки; 6 — гликокалис.

Эукариотическая клетка представляет собой элементарную живую систему, состоящую из трех основных структурных компонентов оболочки, цитоплазмы и ядра.

Биологическая (элементарная) мембрана имеет толщину 6 — 10 нм и при рассмотрении под электронным микроскопом выглядит трехслойной. Наружный и внутренний слои мембраны (темные) образованы молекулами белков, а средний (светлый) – бимолекулярным слоем липидов (преимущественно фосфолипиды). Липидные молекулы расположены строго упорядоченно: гидрофильные концы молекул обращены к белковым слоям, а гидрофобные – друг к другу. Белковые молекулы по отношению к липидному слою могут располагаться по-разному: большинство их находится на наружной и внутренней поверхностях билипидного слоя (периферические белки), часть молекул пронизывает один слой липидных молекул (полуинтегральные белки), а часть – оба слоя липидных молекул (интегральные белки). Такая структура мембран обеспечивает их свойства:

  • пластичность;
  • полупроницаемость;
  • способность самозамыкаться.

Биологическая мембрана обладает избирательной проницаемостью, которая обусловлена особенностями ее строения. Большинство интегральных белковых молекул, пронизывающих оба липидных слоя, являются ферментами. Они образуют гидрофильные поры, через которые проходят водорастворимые вещества. В липидном слое мембран могут растворяться и проходить через них гидрофобные вещества.

Большую роль в обеспечении избирательного поступления веществ через мембраны играет надмембранный комплекс – гликокаликс (преимущественно разветвленные молекулы гликопротеинов, распопоженные на поверхности мембран), большинство из которых представляют собой рецепторы, воспринимающие («узнающие») определенные химические вещества, окружающие клетку. Гликокаликс обеспечивает взаимоотношения клеток многоклеточного организма, иммунный ответ и другие реакции.

Функции биологической мембраны:

  • структурная – является структурным компонентом плазмалеммы‚ большинства органоидов и кариолеммы;
  • разделительная – разделяет цитоплазму клетки на отдельные отсеки;
  • транспортная – обеспечивает транспорт веществ;
  • рецепторная – узнает определенные вещества;
  • ферментативная – некоторые белки мембран являются ферментами.

Читайте: Кожа человека – состав, строение, функции и гигиена #42

Растительная клетка и ее строение

Клетка — структурная единица живого организма. Как функциональная единица она обладает всеми свойствами живого: дышит, питается, ей свойствен обмен веществ, выделение, раздражимость, деление и самовоспроизведение себе подобных. Типичная растительная клетка содержит хлoрoпласты и вакуoли; oкружена целлюлoзнoй клетoчнoй стенкoй.

Хлоропласты — двумембранные пластиды зелёного цвета (наличие пигмента хлорофилла). Отвечают за процесс фотосинтеза. Кроме хлоропластов, в растительной клетке имеются жёлто-оранжевые или красные пластиды (хромопласты) и бесцветные пластиды (лейкопласты).

Вакуоль — полость, занимающая 70—90 % общего объёма взрослой клетки, отделённая от цитоплазмы мембраной (тонопластом). Для рaстительных клеток хaрaктерно нaличие вaкуоли с клеточным соком, в котором рaстворены соли, сaхaрa, оргaнические кислоты. Вaкуоль регулирует тургор клетки (внутреннее давление).

Цитоплазма — внутренняя среда клетки, бесцветное вязкое образование, находящееся в постоянном движении. Цитoплазма сoстoит из вoды с раствoренными в ней веществами и oрганoидoв.

Клеточная оболочка (клеточная стенка) — снаружи плотная, образованная целлюлозой или клетчаткой, внутри плазматическая мембрана, в построении которой участвуют белки и жироподобные вещества. Ее мoлекулы сoбраны в пучки микрoфибрилл, кoтoрые скручены в макрo-фибриллы. Прoчная клетoчная стенка пoзвoляет пoддерживать внутреннее давление — тургoр.

 Ядро — носитель признаков и свойств клетки и всего организма. Ядро отделено от цитоплазмы двухслойной мембраной. В ядре находятся хромосомы и ядрышки. Число хромосом для вида постоянно. Ядро содержит наследственный материал — ДНК сo связанными с ней белками — гистoнами (хрoматин). Ядро заполнено ядерным соком (кариоплазмой). Ядрo кoнтрoлирует жизнедеятельнoсть клетки. Хрoматин сoдержит кoдирoванную инфoрмацию для синтеза белка в клетке. Вo время деления наследственный материал представлен хрoмoсoмами.

Плазматическая мембрана (плазмалемма, клеточная мембрана), oкружающая растительную клетку, сoстoит из двух слoев липидoв и встрoенных в них мoлекул белкoв. Мoлекулы липидoв имеют пoлярные гидрoфильные «гoлoвки» и непoлярные гидрoфoбные «хвoсты». Такoе стрoение oбеспечивает избирательнoе прoникнoвение веществ в клетку и из нее.

Лизосомы — мембранные тельца, содержащие ферменты внутриклеточного пищеварения. Переваривают вещества, избыточные органеллы (аутофагия) или целые клетки (аутолиз).

Тело высшего растения образовано клетками, которые отличаются друг от друга строением и функцией. Клетки, имеющие общее происхождение и выполняющие свойственную им функцию, образуют ткань.

Жизнедеятельность клетки

    1. Движение цитоплазмы осуществляется непрерывно и способствует перемещению питательных веществ и воздуха внутри клетки.
    2. Обмен веществ и энергии включает следующие процессы:
      • поступление веществ в клетку;
      • синтез сложных оргaнических соединений из более простых молекул, идущий с зaтрaтaми энергии (плaстический обмен);
      • рaсщепление, сложных оргaнических соединений до более простых молекул, идущее с выделением энергии, используемой для синтезa молекулы AТФ (энергетический обмен);
      • выделение вредных продуктов рaспaдa из клетки.
    3. Размножение клеток делением.
    4. Рост клеток — увеличение клеток до размеров материнской клетки.
    5. Развитие клеток — возрастные изменения структуры и физиологии клетки.

Схема. Типичная растительная клетка.

Нажмите на картинку для увеличения!

Это конспект по теме «Растительная клетка и ее строение». Выберите дальнейшие действия:

  • Перейти к следующему конспекту: Растительная ткань (ткани растений)
  • Вернуться к списку конспектов по Биологии.
  • Проверить знания по Биологии за 6 класс.

Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности

Органоиды — относительно обособленные компоненты, обладающие специфическими функциями и особенностями строения. Основная часть генетического материала эукариотической клетки сосредоточена в ядре. Центральный органоид в одиночку не в состоянии обеспечить реализацию наследственной информации. Принимают участие цитоплазма и рибосомы. Они расположены в основном на шероховатой эндоплазматической сети.

Синтезированные белки транспортируются в комплекс Гольджи, после преобразований — в те части клетки, где они нужны. Благодаря лизосомам клетки не превращаются в «свалки отходов».

Митохондрии вырабатывают энергию, необходимую для осуществления процессов в клетке. Хлоропласты у растений служат для получения исходного материала, участвующего в энергетических превращениях.

Условно все органоиды клетки делят на три группы по характеру выполняемых функций. Митохондрии и хлоропласты осуществляют превращения энергии. Рибосомы, их скопления осуществляют синтез белков. Другие образования принимают участие в синтезе и обмене веществ.

Несмотря на существующие различия, все части клетки тесно взаимодействуют. Органоиды взаимосвязаны не только в пространстве, но и химически. Связывает все части клетки цитоплазма, в ней же происходят многочисленные реакции. В результате формируется единая структурная и функциональная система.

Строение растительной клетки

Рис.1 Растительная клетка 

Отличие клеточного строения растений от животных — наличие стенки, состоящей из целлюлозы, пектина, лигнина.

Под прочной оболочкой находится плазматическая мембрана, имеющей типичное строение. Есть поры, через которые осуществляется связь между соседними клетками посредством плазмодесм, цитоплазматических мостиков. Нет центриолей, характерных для животных.

Важное отличие растительных организмов — наличие пластид. Крупные хлоропласты придают частям растений зеленый цвет

Фотосинтез в зеленых пластидах — процесс автотрофного питания. Растения создают органическое вещество из воды и углекислого газа при участии солнечного света.

Оранжевая и желтая окраска обусловлена присутствием других типов пластид, красная и синяя — возникает благодаря антоцианам. Лейкопласты и хромопласты специализируются на хранении веществ.

Крупная центральная вакуоль в растительной клетке заполнена клеточным соком. Органоиду принадлежит ведущая роль в поддержании тургора, хранении полезных веществ и разрушении старых белков, отживших свое органоидов.

Строение животной клетки

Это типичные эукариотические клетки. Под плазматической мембраной находятся цитоплазма и органоиды. Клеточной стенки нет. ДНК локализована в ядре и митохондриях.

Рис.2 Животная клетка

Вакуоли в клетках животных выполняют пищеварительные и сократительные функции. Центриоли состоят из пучков микротрубочек, принимающих участие в процессе деления. В качестве органелл движения могут присутствовать реснички и жгутики. Они важны для перемещения одноклеточных животных. В организме многоклеточных создают движение жидкостей или молекул твердых веществ вдоль неподвижных клеток.

Клетка — мельчайшая единица строения многоклеточных организмов. У одноклеточных это и есть тело. Любая клетка представляет собой сложную биохимическую систему. Части или органоиды действуют как единое целое, обеспечивают жизнедеятельность, а при размножении — передачу наследственных признаков.

  • Рис. 1: https://image.shutterstock.com/image-vector/vector-plant-cell-anatomy-diagram-600w-543156751.jpg
  • Рис. 2: wikimedia.org 

Смотри также:

  • Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ, входящих в состав клетки. Роль химических веществ в клетке и организме человека
  • Обмен веществ и превращения энергии – свойства живых организмов. Энергетический обмен и пластический обмен, их взаимосвязь. Стадии энергетического обмена. Брожение и дыхание. 
  • Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле

Транспортировка веществ в клетку

Вещества в клетку могут поступать пассивным и активным транспортом. При пассивном транспорте (ионы, мелкие молекулы, вода) поступление веществ идет по градиенту концентрации (простая диффузия и осмос) без затраты энергии. При облегченной диффузии белки-переносчики временно соединяются с молекулой вещества и проводят его через мембрану.

При активном транспорте идет перемещение веществ против градиента концентрации с затратой энергии АТФ с помощью белков-пермеаз. Через плазмалемму в клетку могут поступать не только мелкие молекулы или ионы, но и крупные молекулы и даже частицы (эндоцитоз). При этом мембрана окружает частицу, края ее смыкаются и частица оказывается в мембранном пузырьке в цитоплазме. Такой способ поглощения твердых частиц называется фагоцитозом, а капель жидкости – пиноцитозом. Выведение веществ из клетки называется экзоцитозом. Эти процессы протекают с затратой энергии АТФ.

Читайте: Обмен веществ в организме человека #40

Цитоплазма

Цитоплазма содержит гиалоплазму, цитоскелет, органоиды и включения.

Гиалоплазма (цитоплазматический матрикс) на 85% состоит из воды и на 10% из белков. Остальной объем приходится на долю липидов, углеводов, РНК и минеральных солей. Гиалоплазма имеет однородную мелкозернистую структуру, обеспечивает вязкость, эластичность, сократимость и движение цитоплазмы. Она представляет собой коллоидный раствор и является внутренней средой клетки, где протекают реакции обмена.

В цитоплазме клеток расположен цитоскелет‚ образованный развитой сетью белковых нитей (филаментов), способных сокращаться. В зависимости от диаметра филаменты делят на: микрофиламенты (диаметром 6 — 8 нм), промежуточные волокна (около 10 нм) и микротрубочки (около 25 нм). Цитоскелет заполняет пространство между ядерной оболочкой и плазмалеммой. Он определяет форму клетки и участвует в различных движениях самой клетки (например, при делении) и во внутриклеточном перемещении органоидов и отдельных соединений.

Включения – это непостоянные компоненты цитоплазмы, содержание которых меняется в зависимости от функционального состояния клетки. Различают трофические, секреторные и экскреторные включения. Трофические включения представляют собой запасы питательных веществ. В растительных клетках это жир, крахмальные и белковые зерна, в животных – гликоген и капли жира. Секреторные включения являются продуктами жизнедеятельности клеток желез внешней и внутренней секреции (гормоны, ферменты, слизь). Экскреторные включения представляют собой продукты обмена веществ в растительных и животных клетках (кристаллы щавелевой кислоты, щавелевокислого кальция и др.), подлежащие выведению из клетки.

Читайте: Пищеварительная система организма человека #39

Ядро

Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Строение ядра

Развитие знаний о клетке

С появление микроскопа ученые получили возможность для пристального изучения живых клеток. Так, в 1665 г. Р. Гуком на срезе пробки было обнаружены маленькие ячейки, названные им клетками. Позднее такие образования внутри растений обнаружили Н. Грю и М. Мальпиги.

Позднее не имевшим специального образования голландским торговцем А. Левенгуком был создан самодельный микроскоп с увеличением в 270 раз. Ему удалось разглядеть:

  • хлоропласты;
  • ядро;
  • утолщения клеточных оболочек.

Увиденное в микроскоп А. Левенгук всегда описывал и аккуратно зарисовывал, без приведения соответствующих объяснений. Так, ему удалось разглядеть бактериальные клетки и одноклеточные организмы. 

Львиная доля открытий компонентов клетки выпала на первую половину XIX в.:

  • открытие пор и клеточного сока (Г. Моль);
  • выделение ядра (Броун Р.);
  • введение термина «протоплазма» (Я. Пуркинье);
  • единое происхождение всех клеточных структур (Шлейден М.). 

Исследования русского ученого-эмбриолога Карла Бэра (1827 г.) приводят к обнаружению яйцеклеток у млекопитающих животных и человека. Данное открытие «сломало» господствующее тогда утверждение о развитии организмов только из гамет мужского типа. Работы Карла Бэра доказали процесс формирования многоклеточных тел из оплодотворенных яйцеклеток. Сравнение им зародышей разных организмов на ранних этапах развития доказало сходство их организации и дало толчок к мысли о единстве появления всего живого на Земле. 

К 1850-у году в биологической науке было сформировано большое количество открытий, связанных с клеткой. Привести их в систему помогли работы немецкого зоолога Шванна Т. и М. Шлейдена. Они создали первую клеточную теорию, объясняющую многие процессы внутри живых тел. 

Исследования патологоанатома и врача из Германии – Рудольфа Вирхова дополнили созданную ранее Шванном Т. и М. Шлейденом клеточную теорию. Вирхов Р. указал на возникновения новых клеток путем деления исходных (материнских) структур. Таким образом, он доказал возникновение «клетки от клетки» и «живого от живого».

После создания основных положений теории о структурно-функциональной единице живого (клетке) были сделаны и другие открытия, касающиеся происходящих в ней процессов. Так, усовершенствование к концу XIX в. микроскопа дало толчок для уточнения состава клетки с проведением описания имеющихся органоидов. Органоидами стали именовать клеточные компоненты постоянного строения, которые выполняют разные функции. 

Позднее был изучен процесс деления, происходящий в процессе митоза либо мейоза. Данные процессы стали основой способов воспроизведения клеточных структур и получили статус «передатчиков» наследственной информации. С использованием современных физико-химических методик детальнее были изучены процессы передачи и хранения наследственных признаков. Также тщательнее были обследованы тончайшие детали всех клеточных компонентов постоянного и переменного состава. Таким образом, было выделено особое биологическое направление — «цитология», занимающееся изучением структуры и жизнедеятельности клеток живых организмов.

Дата Событие
Около 1590 г. З. Янсен изобрел микроскоп
1665 г. Р. Гук описал биологические исследования, проведения с использованием микроскопа. Применил термин «клетка»
1680 г. А. ван Левенгук открыл одноклеточные организмы и эритроциты; описал бактерии, грибы, простейших.
1826 г.

К. Бэр открыл яйцеклетки птиц и животных.

1831-1839 гг. Р. Броун описал ядро в клетке.
1838-1839 гг. М. Шлейдер и Т. Шванн обобщили знания о клетке и сформулировали клеточную теорию: «Клетка — единица структуры и функции в живых организмах».
1855 г.

Р. Вихров дополнил теорию: «Клетка — единица структуры и функции живых организмов».

1877-1900 гг. Усовершенствование микроскопа и методов фиксации и окрашивания. Цитология приобретает эксперементальных характер.
1931 г. Э. Руске и М. Кноль сконструировали электронный микроскоп.
1946 г. Начало широкого использования электронного микроскопа в цитологии.

Методы исследования

В цитологии применяются различные методы исследования. С их помощью можно: изучать морфологию клеток и их компонентов (световая, люминесцентная и электронная микроскопия), устанавливать химический состав и локализацию химических веществ в клетке (гистохимические методы), изучать химический состав и протекание биохимических реакций в клетках (биохимические методы), выделять отдельные компоненты клеток для дальнейшего изучения (дифференциальное центрифугирование), устанавливать пространственную конфигурацию и физические свой‘ ства макромолекул (рентгеноструктурный анализ), изучать процессы деления клеток и ход реакций матричного синтеза (авторадиография).

Читайте: Железы внутренней секреции человека #44

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.

Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Строение вакуоли

Клеточный центр

Кгеточный центр (центросома) расположен вблизи ядра и состоит из двух мелких гранул центриолей, окруженных лучистой сферой (центросферой). С помощью электронного микроскопа установлено, что каждая центриоль представляет собой цилиндрическое тельце длиной 0,3 — 0‚5 мкм и диаметром 0,15 мкм, состоящее из 27 микротрубочек, сгруппированных по три в 9 групп. Функции центросомы: образование полюсов и веретена деления при митозе и мейозе.

Читайте: Надкласс рыбы как группа хордовых животных #27

Вакуоли и органоиды движения

Вакуоли представляют собой участки гиалоплазмы растительных клеток и протистов, ограниченные элементарной мембраной. У растений они содержат клеточный сок и поддерживают тургорное давление. Вакуоли протистов подразделяют на пищеварительные и сократительные. Органоиды движения клеток представлены жгутиками и ресничками. Они содержат по 20 микротрубочек, образующих 9 пар по периферии и две одиночные, расположенные в центре. Жгутики и реснички покрыты элементарной мембраной. У основания органоидов движения расположены базальные тельца, образующие микротрубочки. Реснички и жгутики служат для передвижения бактерий, протистов, ресничных червей и сперматозоидов. Реснички мерцательного эпителия дыхательных путей освобождают их от попавших частиц.

Источники информации
1. Биология для абитуриентов. Авторы: Давыдов В.В. , Бутвиловский В.Э. , Рачковская И. В. , Заяц Р.Г.

Основные положения клеточной теории

Основоположниками клеточной теории являются М. Шлейден, Т. Шванн и Р. Вирхов. Основные положения современной клеточной теории:

  • клетка-основная структурно-функциональная и генетическая единица живых организмов, наименьшая единица живого;
  • клетки одноклеточных и многоклеточных организмов сходны по строению, химическому составу и важнейшим проявлениям процессов жизнедеятельности;
  • каждая новая клетка образуется в результате деления исходной (материнской) клетки;
  • клетки многоклеточных организмов специализированы: они выполняют разные функции и образуют ткани.

Читайте: Высшая нервная деятельность человека и ее значение #43

Клеточное строение организмов

Клеточное строение организмов — основа единства органического мира, доказательство родства живой природы

Как уже было отмечено ранее, бактериям, грибам, растениям и животным свойственно наличие клеток разной формы и специализации. Вирусные частицы также не могут жить без живых клеток, так как там происходят процессы их размножения, хотя сами они являются неклеточными формами жизни.

В полноценной живой клетке постоянно происходят следующие процессы:

  • раздражение;
  • развитие;
  • рост;
  • метаболизм (обмен веществ);
  • гомеостаз (саморегуляция) — способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание равновесия;  
  • способность к воспроизведению себе подобных. 

Наличие совокупности данных признаков отличает живые организмы от неживых тел. Кроме этого, внутри живых клеточных структур хранятся, а при размножении передаются наследственные признаки, заключенные в генах. При половом размножении наследственные признаки комбинируются, что приводит к формированию новых генетических наборов и появляются новые признаки у организмов. Таким образом происходит жизнедеятельность живых организмов.

В природе существует великое множество живых клеток, которые различаются строением, формами и специализацией, но для всех их характерно наличие:

  • наследственного аппарата;
  • плазматической мембраны;
  • цитоплазмы.

Возникновению современных клеточных структур сопутствовал длительный эволюционный процесс, происходящий в биосфере. Он делился на:

  • химическую;
  • биологическую;
  • биохимическую эволюции.

Образование многоклеточных форм жизни не является банальным суммированием клеток, а выступает результатом сложных эволюционных преобразований, происходящих с сохранением присущих живому признаков. Таким образом организмы приобретали новые свойства и функции. В результате менялось их строение и образ жизни. Происходящие эволюционные преобразования привели к появлению новых видов и указали на общность происхождения всего живого — единого предка.

Полноценное существование живых организмов возможно лишь тогда, когда входящие в его состав клетки будут выполнять присущие им функции. Простое сложение клеток друг с другом не приведет к созданию целостного организма, так как полноценно функционировать он не сможет. Так, было открыто единство целостного и дискретного составляющего. 

Увеличение скорости метаболизма достигается ростом количества маленьких клеток у многоклеточных тел. При нарушении функций одной клетки (ее гибель) происходит восстановление ее деятельности вследствие воспроизведения клеточных структур. Без клеток гены существовать не могут, а значит. невозможно хранить и передавать наследственную информацию. Аналогично и с энергией, которая также не сможет аккумулироваться от Солнца, если не будет растительных клеток с хлоропластами.

Благодаря разделению клеточных функций в многоклеточных телах (организмах) живые системы смогли приспосабливаться к разным условиям существования и средам обитания. В результате возникали новые систематические категории – виды, роды, классы. Таким образом, шло длительное усложнение их организационного строения. 

После установления единого плана строения клеточных структур у всего живого возникли предпосылки единого происхождения живых организмов на Земле. Данные предпосылки были доказаны многочисленными открытиями в области палеонтологии, эмбриологии и других областях биологии. Так, возникло представление не только о едином плане строения живых организмов, но и доказательство единства происхождения органического мира.

Смотри также:

  • Многообразие клеток. Прокариоты и эукариоты. Сравнительная характеристика клеток растений, животных, бактерий, грибов
  • Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ. Роль химических веществ в клетке и организме человека
  • Клетка – генетическая единица живого. Хромосомы, их строение и функции. Число хромосом и их видовое постоянство. Соматические и половые клетки

Цитоплазматическая мембрана

Цитоплазматическая мембрана – плазмалемма – биологическая мембрана, покрывающая цитоплазму клетки и обеспечивающая обменные процессы клетки с окружающей средой. Плазмалемма образует выросты, выпячивания, складки, микроворсинки, которые многократно увеличивают поверхность клетки. Наружная поверхность мембран животных клеток может быть покрыта муцином (гликопротеин), слизью или хитином, растительных – целлюлозой или пектиновыми веществами, образующими оболочку растительной клетки.

Плазмалемма выполняет следующие основные функции:

  • барьерную – отграничивает и защищает клетку от воздействий факторов окружающей среды;
  • регуляторную – участвует в регуляции обмена веществ и энергии между клеткой и внешней средой;
  • рецепторную – узнает определенные вещества и обеспечивает связь между клетками в тканях многоклеточного организма;
  • структурную – участвует в образовании жгутиков и ресничек.

Читайте: Мочевыделительная система в организме человека #41

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Строение хлоропласта

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Строение лейкопласта

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Строение хромопласта

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Зона красоты и здоровья
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: